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Reactive dynamics on two-dimensional supports: Monte Carlo simulations and mean-field theory
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Monte Carlo simulations and mean-field models are used for the study of nonequilibrium reactions taking
place on the surface of a catalyst. The model represents the catalytic reduction of NG, witheHPt surface.
Both Monte Carlo simulations and mean-field results predict the existence of a critical surface in the parameter
space where the catalyst remains active for long times. Outside this critical region the catalyst remains active
for finite times only. A discrete version of the mean-field model is proposed that takes into account the discrete,
two-dimensional nature of the catalyst. For homogeneous initial conditions this improved model provides
better quantitative agreement with the Monte Carlo results.
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I INTRODUCTION tion of H, leads to hydrogen-covered catalysivhile for
high temperatures the surface is covered by (NQ disso-

To describe the complex dynamical behavior of reactiveciation becomes negligibleg{14]. Phase transitions of the
processes taking place on catalytic supports, it is necessary tatalyst between the square and the hexagonal lattice con-
take into account detailed interactions between neighborinfigurations and kinetic oscillations were found between 430
species, local fluctuations, and the geometric properties aind 445 K[13,14.
the suppor{1-9]. In the current study a simple chemical scheme is exam-

The widely used mean-field moddlk0] are successful in  ined, which is inspired from the NO reduction on the surface
describing homogeneous, well mixed systems and cannot a@f Pt catalyst{15-18. The scheme uses only bimolecular
equately describe processes governed by local effects ariactive steps and there are no autocatalytic processes. In
fluctuations. In particular, for catalytic processes where théddition the model igattice compatible This means that the
reactivity takes place on the two-dimensional surface of th&umber of particles on the catalytic surface together with the
catalyst and where diffusive mixing is restricted, mean-field€MPY catg!ytlc.snes are con.served throughout the Process.
models normally fail to reproduce the experimental resuItsTh'.S condition is hecessary in QrQer to have a mganmgful
Instead, numerical Monte Carlo and lattice-gas models ca ttice model. Because of its minimal character this model

be designed that take into account local properties of th’?oes not address the problems of oscillatory kinetics and of
lattice and the finite range of the interactidiis-9]. Due to attice phase transitions observed in a range of temperatures

in the NO reduction on Pt surfa¢&5-19. However, it pre-
. : . X ficts different equilibrium regimes separated by a critical
ducing the rich variety of mesoscale pattern formation agrface on the parameter space. Furthermore, this simple

well as the complex dynamics of catalytic proces9]. model predicts that near criticality the catalyst remains active
A very successful Monte Carlo model that describes thg, long times, whereas away from criticality a “frozen”

; ot 1
catalytic oxidation of carbon, C8;0,—~CO, on the Pt ga46 is soon reached where the catalytic surface is “poi-
catalytic surface, was introduced by Ziff, Gulari, and Bar-ggneq” by reactants or products.
shad in 19863]. This minimal model predicts that the sys- | Sec || the minimal lattice compatible chemical scheme
tem undergoes kinetic phase transiti¢8s-8], which corre- g jntroduced. In Sec. il Monte Carlo simulations are shown
spond to poisoning phenomena seen in catalytic experimentg,q the phase space is explored to determine different equi-
[11_1_3- ) ) ) librium regimes. In Sec. IV the mean-field kinetic equations
~ Adifferent catalytic reaction that presents complex kinet-are presented and the phase space properties are discussed.
ics is the NO reduction with Hthat also takes place on the qygjitative agreement is reached between the mean-field re-
surface of Pt catalyst. In this reaction multiple steady statesy,its and the Monte Carlo simulations. In Sec. V an im-
poisoning, and kinetic oscillations are obserjdd]. The  oyed mean-field approach is proposed by truncating the
activity of the reactions depends on the partial pressure of thg5ster equation, which takes into account only interactions
reactants By/Pyos, on the surface temperature and on theyith nearest neighbors. This improved approach better pre-
surface reconstruction. Poisoned states are observed for logicts the Monte Carlo results. Finally, in the concluding sec-
temperaturesge.g., for temperatures below 250 K the adsorp-tion the main points of this work are drawn and open prob-

lems are proposed.
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action, adsorption and desorption steps. This model is useéd/e assume that the constdnof the last reaction is equal to
to describe the catalytic reduction of NO with, ldn Pt lat-  unity. That means that the remaining constdats k,, and
tice [14,15. We assume that the catalytic surface is sur-ks are expressed in units &€ In the sequel we study the
rounded by a gas containing in excess NO apdidlecules chemical system of Eqg6), (3), (4), and (5) on a two-
with similar partial densities. A reaction between NO and H dimensional square lattice, under the assumgtieri. Then
takes place only on the surface of a catal§ay and after the final system contains only three parametkss: k,, and
desorption of the products the catalytic site remains intacks.

and can serve again. The model is described by the following

chemical scheme: Ill. MONTE CARLO SIMULATIONS
k1 First we investigate the behavior of the system using
S—NO, (1) Monte Carlo simulations on a square lattice consisting,. of
XL sites. We start with a completely empty lattice, where
k2 the appropriate reactior(), (3), (4), or (5) take place ran-
NO+S—N+0O, (2)  domly with corresponding probabilities
ks 1 ks Ky 5
8_7 H2, (3) [} ] [} and -
>k Dk 2k >k
Kq
Ot H—S+S, “ respectively. The suixk in the denominators is defined as
ks
N+N—S+S, (5) > k=1+kg+ks+ks,

wheresS represents an empty lattice site on the catalytic sur; o . . .
) . for reasons of normalization. The simulations proceed via the
face and the;’s are the corresponding constants of the re-

) i . : . ollowing algorithm: (a) At each trial a random lattice site is
actions. The first equation describes the adsorption of a Ng():hosen.(b) If this site is empty then with equal probability

molecule on an empty site. If a neighboring empty lattice site .
is available, the NCF)) >rlnolecule cangbe disgocia[t)e)(lj in two at£50%) a molecule NO or B will be found above the empty
oms N and 'C[Eq (2)]. The dissociation probability has been site[20]. In the former case, if also a neighboring lattice site
measured in exberihents and is of the order of Ga%). A is empty, then these sites can be substituted by N and O
hydrogen molecule can occupy an entire empty site .becau atoms with probability Xk, otherwise there is no change. In

of its small size, Eq(3). If an atomic oxygen and a hydrogen e latter case Hwill be deposited with probabilitk;/>k.

molecule are found in adjacent lattice sites they react formgc) If the randomly chosen lattice site is occupied by Q, H

ing a water molecule, which is desorbed from the catalyticOr N constituent, then the reactiolé) and (5) may take

surface leaving two empty lattice sites, as E). indicates. place with probabilitie&,/=k andks/2k, respectively, pro-

Similarly, if two atomic nitrogens are found in adjacent lat- vided that they have the right environme(d) When a par-

tice sites they react forming a nitrogen molecule that in turnt'cUIar trial is finished we continue by choosing randomly

desorbs from the catalytic surface leaving two empty IatticeanOther lattice S|t'e(.e) At eagh trial the_ time is equal to the

sites too, Eq(5). These last two recombination/desorption total numb_er of_trlalszup until then, divided by the _total num-
processes have been modeled in one chemical reaction stB r Qf Iattlcg sites 7). That means th'?“ the un'.t of time

in order to keep the system as simple as possible and el nsidered is a Monte Carlo step, which is defined.&s

reduce the number of parameters involved. tnals._ The t_emporal evolution of the concentration of each
constituent is recorded.

A similar scheme may also describe the catalytic reduc: The results of Monte Carlo simulations are summarized in
tion of NO with CO, if H, is substituted by CO. Then the _. . U ; .
H y Fig. 1. A square lattice of finite size, 4310 sites, with pe-

result of Eq.(4) will be the desorption of CQ Furthermore, . dic bound diti . d talvet. Al h
because our proposed model does not involve any structurgPdlc boundary conditions 1S used as a catalyst. Always the
nitial state is the empty lattice. As the simulation proceeds,

phase transitions of the catalytic surface it may provide a i > .
better description of the latter catalytic reductiptg]. In after a period of some initial random fluctuations the system

what follows we use the scheme of the M@, reaction, by reaches a stationary state, where no activity exists. In this
considering cases werexil—hex phase traznsiti ons d’o not frozen, saturated state, there are no empty sites and the lattice

L : : is fully occupied by O, H or N. Nevertheless the timg,
ﬁg‘i ggc?édir;?iokneepmg in our mind the analogy with théneeded for reaching saturation and also the dominating con-

tituent concentrations (Hor O) are strongly depended on
pe kinetic parameters. For fixed valueslgf and ks there
exists a value oks, denoted a&§', such thata) for ks less
thanks' the atomic oxygen dominates in the lattisee Fig.
K 1(a)], while (b) for ks greater thark§' the lattice is finally
S+S—N+O. (6)  mostly occupied by hydrogefsee Fig. 1c)]. We callk3',

In order to reduce further the parameters of our model wi
also treat the first two equations in one step. Then instead
Egs.(1) and(2) we use the reaction
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FIG. 1. Time evolution of the concentrations of sites covered by FIG. 2. The statistical mean value of tinig needed by a 40

hydrogen (H), nitrogen(N), oxygen(O) and vacant sites on a 40 X 40 lattice for reaching the frozen state, as a function of parameter

X 40 square lattice. The values of dimensionless reaction constanfg: The other parameters d{@_clr andks=1. There is a prominent
arek,=1, ks=1 and(@) ks=0.73,(b) ks=0.74,(c) ks=0.75, and maximum at the critical valu&;'=0.74. Error bars represent sta-

tistical errors. The dotted line is a guide for the eye. The unit of

(d) k3=0.74. The critical value i&'=0.74. Same random number >~
time is a Monte Carlo step.

sequence is used in cades (b), (c) and different sequence ).
The unit of time is a Monte Carlo stgd600 trialg.

see from Fig. 2 that as we depart from the critical valge,
the “critical” value of k3, because it separates two domainsdrops very fast. For finite sizes there is a possibility at a
of the parameter space with distinctive steady state concemparticular simulation fork; equal tok§' the timet, to be
trations. For the critical valuk§' the lattice reaches the satu- smaller than the correspondirg of another S|mulat|on for
rated state after much Ionger timgs called also “satura- kj slightly below or above ok§" using different sequence of
tion times,” where either the oxygen or the hydrogenrandom numbers. However, for the same sequence of ran-
dominates, depending on the random fluctuations in the padom numberg, is always larger at the critical value.
ticular simulationsee Figs. (b) and 1d)]. In Fig. 1 the time In Fig. 3 the dependence &f' on the parameters, and
evolution of the concentrations of,HN, O, and vacant sites k. is presented. In particular, the variationkff as a func-
S are presented. In case@l 1(b), and Ic) the time depen-  tjon of k, is shown for three different values & differing
dence of the concentrations are shown, Kgra slightly be-  from each other by one order of magnitude. In order to have
low, equal, and slightly abovks', respectively, using ex- a complete coverage of the parameter spads also varied
actly the same sequence of random numbers. In cabeal over three orders of magnitude. As Fig. 3 shows, the
simulation using different random number sequencekfor
equalk§' is shown. In almost all the cases with near the — —
critical value, the concentrations of the constituents at the
frozen state are roughly as follows: the nitrogen is about 0.3, 0.8 | % % k5 10 ]
the dominating O or H,) about 0.6 and the third one gHbr g
O, respectivelyabout 0.1. There are no vacant sizes at all in
the frozen state. These approximately stationary concentra

tions nearkCr do not seem to be significantly affected from 7+
g y 0.7 gzgi *--¢ k=01
ZE
4+

the variation ofks through its critical value. Only as we kg
considerably depart frork3" the concentration of the domi-
nating constituent gradually increases at the expense of thi :{
other species’ concentrations. 0.6 | I .
The timet, for the system to reach the frozen state shows z
a prominent maximum at the critical valk§". This can be i
seen in Fig. 2, where the mean val{tg) with its statistical
error is plotted as a function of parametgr The statistical 0.5 w w ;
mean value oft, is calculated over twenty Monte Carlo -1 Ig ) 1 2
simulations for the three values kf roundk$', because of Grots
large fluctuations of, near the critical value. This effect is FIG. 3. The critical valueS' as a function of logy(k,) for ks
normally called “critical slowing down.” Average over ten =0.1(diamonds, ks=1 (circles, andks= 10 (squares The lattice
simulations are used fd; values away from criticality. We  size is 40<40. The dashed lines are guides for the eye.
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L i dx
190090 T gy 074 E d_ts = — 2x&—kXg+ 2k XX+ 2KsXZ, @)
E E dxy
50000 T E i i x3—2ksx3,, (8)
E dXo
- at - X&— KaXoXi, 9)
% 50 100
' ' dxy
b) k,=0.68 E i kaXs—KgXoXH (10)
2000 E E 1
t L
= E L) where, as before, we have assumed thatl. Taking into
1000 L) 1 account that
00 5I0 160 Xs+ XN+X0+XH:1, (11)

L (lattice size: LxL)

- _ we can substitute,, at the previous equations to obtain the
FIG. 4. The statistical mean value of tiig needed by the dynamical system

system for reaching the frozen state, as a function of the linear
dimensionL of the lattice, for(a) ky=k§'=0.74 and(b) k;=0.68. dx

The lattice consists of XL sites and the other parameters &kje d_ts =— 2x§— K3Xg+ 2K X o= 2K XoXg— 2K 4XoXN— 2k4xé
=1 andks=1. Error bars represent statistical errors. The unit of
time is a Monte Carlo steplL trials). +2Kkex2,, (12)
critical valuek§' is shifted to higher values for increasikg dxy

_ . I —— =x2—2ksX (13
and finally comes to a saturation value. The same behavior is dt S 5XN
observed when increasirkg. For small enough values &,
the value oks' only slightly depends oks. As noted earlier, dxo
the surface ok§'(k,,ks) separates the three-dimensional pa- T xg— KaXot KaXoXst KaXoXnt k4xé. (14

rameter spacekg, k,, ks) in two qualitatively different
areas. Above(below this surface the hydrogexygen s system has the following two trivial fixed points:
dominates in the lattice when the frozen state is reached. For
values of parameters lying on this surface the finite size cata- P,: xs=0, xy=0, %o=0 (=x4y=1), (15
lyst remains active for much longer times.

Finally, the dependence of the characteristic tie
needed for the system to reach the frozen state is studied as a

function of the lattice size X L. Figure 4 shows the mean | ear stability analysis shows that tiRg fixed point, given

value(t,) calculated over ten Monte Carlo runs, as a func-py ¢ (15) is stable. The eigenvalues of the linear stability
tion of L. The error bars represent statistical errors. In Fig:matrix atP, are

4(a) this calculation is presented for the critical vall ,
while in Fig. 4b) for a value ofks#k§'. Notice the differ- 0, —ks, and —Kk,.

ence in the time scales between these two plots. We see that

(to) increases more abruptly with the lattice size at the criti-The fixed pointP,, given by Eq.(16), is unstable. The cor-
cal value. For example, the ratio @tf,) for lattice 120 responding eigenvalues are
X120 to the correspondingt,) for lattice 20<20 is ten

PZ: XSZO, XN:O, Xo:]. (:XH:O) (16)

times larger in Fig. @) (ks=k5") compared to Fig. &) — (kg+kg) = V(kg+ky) 2+ 4kgky

(ks#kg"). This suggests that the activity on a macroscopic . and 2 :

catalyst lasts for much longer times when the reactive con-

stants are at criticality. A saddle-node bifurcation takes place in the dynamical

system and two nontrivial fixed points appear. For fixed val-
ues of the parameteks andks the bifurcation point fok, is
IV. MEAN-FIELD APPROXIMATION

2
In the mean-field approximation the concentrations KS' = 8ksks (17)
. . 4 2"
Xs, XN, Xo, @andxy of the constituents of the chemical sys- [K3(1+ v2ks) — V2Ks]
tem described by Eq$6), (3), (4), and(5) obey the follow-
ing equations: For k,=kg' the additional fixed points are given by
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ks L a)k=0.1
Psi Xs=K3, Xn=—==, Xo=Y+, (18 4 /

.
. .
2+ f,/' ]
P4: XS: k3, XN: 3 y XO:y, y (19) .
V2Ks 0
where " |

1 1+ \2ks
yo=o| 1k

2 * ke
1 \/k4[k3(1+ (2kg) — \2ks 12— 8K2Ks - i
+— .

2 2KaKs A

If the condition

V2Ks

3<W (21 FIG. 5. Projections of the critical surface on parameter space in
5 the plane ofk; andk,, for (a) ks=0.1, (b) ks=1, and(c) ks=10.

. . . or Solid lines show the results of the mean-field approximation, Eqg.

holds(and under the bifurcation conditida=kj’), thenthe  (17) potted lines represent the results of the improved mean-field

concentrations, Xy, andxp given by Eqs(18) and(19)  approximation, Eq(37). The data of Fig. 3 are also added for
belong in the proper area from 0 to 1. The stable fixed pointomparison with Monte Carlo simulations.

is P3, given by Eq.(18). Since
Beyond the quantitative disagreement between the mean
ks field predicted and the Monte Carlo calculated critical sur-
yrty-=1-ks= ﬂzl_XS_XN:XOjLXH, (22 face, depicted in Fig. 5, there are also further differences at
° the semiqualitative level. In particular, in the domain of hy-
drogen domination the mean-field equilibrium is character-

for the stable node solution we hawg=y, and conse- . . .
quentlyx,=y_ . That means that the dependence of the conlzed by the absence not only of vacant sites in Monte

centrationsxg andxy on k, is very simple, and is given by g?:oiss:cmlula&ovng}ggt slsﬁ (grg'treongie: ;rs]g iﬁiﬁgn:—\tﬁﬁﬁe
the variation ofy, andy_, respectively. Fok,=k;" there - 15 Ty © d by hydrog 1sag
e e conce+ntratio ’:x 1 X ) A;k - situation depicted in Fig. (&), where nitrogen and oxygen

q th 353 H tzt' S AN ; ‘t‘. . are also present at the frozen state. At the other side of the
creases he oxygethydrogen sta lonary concentralion 1S . a1 surface the vacant site concentration is nonzero in the
gradually increaseddecreasedup to its limiting value 1 mean-field approximatiofEq. (18], which does not happen
—Xg— Xy (zero for ky— oo, i

. in Fig. 1(a). Furthermore, although the oxygen concentration

The system .Of Eqd12)-(14) was sol\_/e_d_ numerlpglly un-is grgater than hydrogen, this isgnot neceggarily valid in com-
der the restriction of Eq(21), using as initial conditionXs — arison with nitrogen or vacant sites concentrations.
=1, xy=0, Xo=0. Then fork, less thank, the system We can conclude that the mean-field approximation pre-
goes to the trivial stable fixed poifty, Eq.(15), while fork,  gicts the existence of the critical surface and its main role in
greater tharks' the system reaches the equilibriuP3, Eq.  the qualitative behavior of the system, although it cannot
(18) It is observed that under the restriction of the Conditionreproduce accurate|y in quantitative level the results of
(21) the surface at the parameter space defined by(Ef).  Monte Carlo simulations. This success is very important pro-
plays the same role as that of Fig. 3 discussed in the previoygded that mean field is a very crude approximation that does
section, i.e., defines the limits of the dominating constituenhot take into account basic properties of the catalytic surface
in the competition between oxygen and hydrogen. The casgych as the discreteness of the lattice and its two-dimensional
k, less(greatey thank§" corresponds té; greater(less than  character.

', where hydroger(oxygen dominates at the stationary
state of the system. Moreover, the activity on the catalyst
remains for much larger times when the parameters lie on the
critical surface. In Fig. 5 the solid lines show projections of We are able to improve quantitatively the results of the
this surface on the two-dimensional planekafandk, for ~ mean-field approximation, by using as a starting point a dis-
three different values dfs at 0.1, 1, and 10, respectively, as crete version of Eqg7)—(10), which better match the nature
given by Eq.(17). The results of Fig. 3with the error bars  of the catalyst. To assimilate the Monte Carlo rules we con-
are also included for comparison with Monte Carlo simula-sider explicitly the spatial arrangement of the reactants and
tions. products. For this purpose we introduce for each latticei site

V. IMPROVED MEAN FIELD APPROXIMATION
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the corresponding site probabilities NO,, H;, andS, to  where theX ;s indicates summation over all the first neighbors
find a nitrogen, oxygen, hydrogen, or a vacant site respecf the lattice sité. The factors in expressiorig6)—(29) arise
tively. Obviously we have from the need to change the state of the givenisiéad not
the state of the entire system, as is the case of the mean field.
N;+O,+H;+S=1 foreach lattice sitei.  (23) For a two-dimensional rectangular lattice, such as the cata-
lytic surface that is considered here, each summaligoon-

The full state of the system can be described by the timetains four terms. Using the conservation of probability, given
dependent probability distribution functid®({o},t), where by Eq.(23), we can solve for H(for example and substitute
each spinlike variabler; represents any of the four possible it in Egs. (26)—(28). Then, for a lattice ofL XL sites, we
states (N, O, HS) of sitei. For the two-dimensional square need to solve a system o3 coupled equations for calcu-
lattice catalyst the index takes values=1,2,... L XL. lating the local densitie§(t), N;(t), and Q(t). This sys-
The evolution of the probability distribution is described by tem constitutes the discrete version of the mean-field ap-
the Master equatiofl0,21,22 proximation. Instead of three, we now deal with.%3

nonlinear first order differential equations. This way one

dP({ai}.t) _ Z nyp i takes explicitly into account the discrete nature and the two-
a4 wij({oi}—{oiPP{ai}.t) dimensional character of the catalyst. The total concentra-
tions of each constituent are given at any time by the rela-

tions:

+§ w({o{}={a)hP{o{}.t). (24)

1 1
The transition probabilitiesv;({o{}—{oi}) represent the N(t):EEi NiCt), O(t):F Z O,

transition from staté o } to state{o;}. During the evolution
only one of the lattice sites changes at a time and the transi- 1
tion ratesw; depend on the state of the four neighbor sites. S(t)= g > S (30)
For example, sit¢ being currently on state Khitrogen cov- '
ered can change into stat® (empty sit¢ provided that any
of the neighbors is at the state N and the transition probabil-
ity is then proportional to the reaction rate. The probabil- H(t)=1—N(t)—O(t)— S(t). (31)
ity S; of a given site to be on a stat& (and similarly for all
other constituenjscan be written in terms of the global prob- ~ The complicated discrete system of E¢®6)—(29) may
ability distribution: be simplified if we consider an homogeneous initial condi-
tion, where all the probabilities far=0 are site independent,
b= S p e 0 e S(0)=x5(0), N(0)=xy(0), Q(0)=xo(0), and
S e T (01,02, - ,01=S,0i41, - 0L D). H;(0)=xy(0) for each sitei. Then we observe from the
" (25)  €equations of motion that the time derivatives of each con-
stituent are also independent of the particular site, leading to
Using Eqgs.(24) and(25) we can find the evolution equation common time evolution of the probabilities of every con-
for the site probabilityS,. However, the equation includes stituent at each lattice site, i.e.,
terms proportional to the two-site probabili§y ;.. 5 to find

simultaneoushs particles both on sitesandi + 8. By trun- S =xs(t),  Ni(t)=xn(1), G(D)=Xo(t)
cating these terms int§; j - 5= S;S;+ s we find the first order and H(t)=xu4(1), foreachsitei. (32
truncated equations as:

ds In that case the discrete system is reduced to a simple one
a9 _ of the standard mean-field type. Taking into account that
dt kEg SS+smkeS T kSE(; NiNi each sun ; merely contributes a factor of 4, puttig=1

as previously, dividing by a factor of 2 each one of the four
remaining equations and rescaling also by 2 the tine,

+k42§ (QOH;+ 5+ HO1 o), (26) consideringr= 2t), we finally obtain the reduced mean-field
system:
dN, 1
—1_Z L N dx k
gt 252 SSuske2 NN, @) Jo= 2 5 Xst 2k HAkaxox, (39
do, 1 dx
Gt 2 2(;4 SiSi+5_k426 OHis s, (28) d_q'_“zxé_stxﬁ, (34)
dH, dxo
W=k3si—k425 HiOH&, (29) F:Xé_ 2k4XoXH, (35)
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dxy kg system comes to a stationary, frozen, fully covered state. The
ar 5 Xs™ 2K4XoXH - (36)  time needed for the system to reach the equilibrium state
depends on the parameter values and on the lattice features.

Comparing the resulting system with the standard mean? critical surface exists in the parameter space, which di-
field system of Eqs(7)—(10) we conclude that for homoge- vides the parameter space in two domains where either the
neous initial conditions the only effect of the discrete two-0xygen or the hydrogen dominates at the stationary state of
dimensional nature of the catalytic surface in the mean-fieldhe lattice. On the dividing critical surface the catalyst re-
approximation, besides time rescaling, is the renormalizatiomains active(unsaturatedfor longer times, comparative to
of the two constants of reactiokg andk, to valuesks/2 and  the saturation times calculated for parameters outside the
2k,, respectively. Consequently all the discussion and theritical surface. We also examined the dependence of the
results of the previous section are valid exactly, if we merelysaturation time on the lattice size. As expected, the corre-
substitute the parameteks and k, by their renormalized sponding time increases abruptly for parameter values
values. As a result, from E@17) we obtain that the critical around the critical surface.
surface, in the improved mean-field approximation described In the framework of the standard mean-field approxima-

here, is given by tion the stationary states of the chemical system are de-
scribed by stable fixed points of the corresponding dynami-

r_ k3Ks cal system. A saddle-node bifurcation takes place providing

4 ks 2 (37) the critical surface of the long time activity, which also de-

S5 (1 V2ks) — \2ks fines the limits of the dominating constituent in the compe-

tition between hydrogen and oxygen. This bifurcation pre-

In Fig. 5 we plot with dotted lines the intersections of the dicts only the qualitative features of the system. The
critical surface given by Eq(37), with the planesks apparent qualitative success of the mean flgld results in our
=0.1, 1, and 10, respectively. Comparing with the Eg) simplified system may be related with thg S|mp_le e.volutlon
arising from the standard mean-field approximation we con®f the reactant coverages towards the trivial poisoning state.
clude that the renormalization, coming from the homoge-However, this approximation should not be appropriate for
neous discrete system, significantly improves the quantitativéescribing richer models with more complex behavior, that
agreement of the theoretical mean-field results with the datare possibly able to account for experimentally observed spa-
of the Monte Carlo simulationgig. 5, circles. Especially in  tiotemporal self-organized patterfiz4,25.
the case where all the reaction constants are of about the To improve agreement with Monte Carlo simulations at
same order of magnitude, the agreement is considerably bethe quantitative level, it is necessary to explicitly consider
ter [see Fig. B0)]. In almost all cases the improved mean- the discrete, two-dimensional character of the catalytic sur-
field equations approximate better the Monte Carlo resultsface. For homogeneous initial conditions the discrete set of
except for the case where thg andk, are much larger than coupled differential equations leads to an improved mean-
ks. Furthermore, at equilibrium, in the range of parameterdield scheme, which, through a renormalization of the reac-
where oxygen dominategor k, greater thark{'), the con- tion constants, gives analytical results in better quantitative
centration of vacant sites is decreased friogrto ks/2 [see  agreement with those obtained from Monte Carlo simula-
Eqg. (18)], reducing by half its difference from zero, i.e., the tions and a better representation of the critical surface.
corresponding Monte Carlo equilibrium val[gee Fig. 1a)]. In a real catalytic reduction there are at least two physical
Consequently, the improved mean-field approximationmechanisms present that are not taken into account in this
that effectively leads to a renormalization of the values of thedescription and tend to raise the poisoning that always ap-
reaction constants by taking into account more detailed inpears in our simulations. The first one is the desorption of
formation of the surface lattice structure of the catal2s, NO and H (or CO) taking place above 400 KL4], which
is able to reproduce more accurately the results of Montereates vacant sites and accelerates the reaction. This seems
Carlo simulations. Further models, taking into account ranio be responsible for the “surface explosion” and the chemi-
dom local fluctuations, are expected to give more realistical oscillations observed in the experimefptst—16. An-
results closer to the Monte Carlo results. other mechanism is the reaction between next nearest-
neighboring reactants. We have considered that the reactions
(4) and (5) may occur only whenever the reactants occupy
adjacent sites in the square catalytic surface. The frozen
Catalytic reactions restricted on two-dimensional supportstates that appear in the Monte Carlo simulations consist of
present a rich spatiotemporal behavior that cannot always hislands of oxygens or hydrogens that are surrounded by ni-
well described by the standard mean-field models. As drogens arranged in second neighboring sites among them-
working example we have studied the catalytic reduction ofelves, forming a closed contour. As a result, if we allow the
NO and H, (or CO) on a Pt lattice. This process is describedreactiong4) and(5) to take place between second neighbors
by a minimal set of chemical reactiofiggs. (6), (3)—(5)],  with smaller probabilities compared to first neighboring re-
using three reaction constants as parameters. Monte Caréxtants, there will be a sustained activity at least near the
simulations, starting with a completely empty square latticegritical surface. Both these mechanisms are currently under
showed that after a period of some random fluctuations theonsideratior] 26)].

VI. CONCLUSIONS
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As explained in the introduction this minimal model doesrepresentation of a catalytic process. All these details can be
not address the problem of oscillatory chemical kinetics andncorporated in the current model, both in the mean-field
surface phase transition observed for certain temperaturgpproaches and in the Monte Carlo scheme, and predict a
ranges in surface catalysis. To account for these effects mumuch richer spatiotemporal behavior, including pattern for-
timolecular auto-catalytic steps need to be included into thenations and nonequilibrium, oscillatory steady states.
model[27]. These will introduce higher order nonlinearities
within the mean-field equations that in turn can give rise to
multistability, sustained oscillations, and pattern formation.
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