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Reactive dynamics on two-dimensional supports: Monte Carlo simulations and mean-field theory
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Monte Carlo simulations and mean-field models are used for the study of nonequilibrium reactions taking
place on the surface of a catalyst. The model represents the catalytic reduction of NO with H2 on a Pt surface.
Both Monte Carlo simulations and mean-field results predict the existence of a critical surface in the parameter
space where the catalyst remains active for long times. Outside this critical region the catalyst remains active
for finite times only. A discrete version of the mean-field model is proposed that takes into account the discrete,
two-dimensional nature of the catalyst. For homogeneous initial conditions this improved model provides
better quantitative agreement with the Monte Carlo results.

DOI: 10.1103/PhysRevE.63.066126 PACS number~s!: 82.20.Wt, 05.45.2a, 05.40.2a, 82.65.1r
iv
ry
rin
s

t a
a

th
th
el
lts
ca
th

p
a

th

r
s-

en

et
e
te

th
he

l
rp

con-
30

m-
ce

ar
s. In

the
ess.
ful

del
of

ures

al
ple

tive
’’
oi-

e
wn
qui-
ns
ssed.
re-

m-
the
ns
re-
c-
b-

tive
re-

na
I. INTRODUCTION

To describe the complex dynamical behavior of react
processes taking place on catalytic supports, it is necessa
take into account detailed interactions between neighbo
species, local fluctuations, and the geometric propertie
the support@1–9#.

The widely used mean-field models@10# are successful in
describing homogeneous, well mixed systems and canno
equately describe processes governed by local effects
fluctuations. In particular, for catalytic processes where
reactivity takes place on the two-dimensional surface of
catalyst and where diffusive mixing is restricted, mean-fi
models normally fail to reproduce the experimental resu
Instead, numerical Monte Carlo and lattice-gas models
be designed that take into account local properties of
lattice and the finite range of the interactions@1–9#. Due to
their detailed character, these models are successful in re
ducing the rich variety of mesoscale pattern formation
well as the complex dynamics of catalytic processes@8,9#.

A very successful Monte Carlo model that describes
catalytic oxidation of carbon, CO1 1

2 O2→CO2 on the Pt
catalytic surface, was introduced by Ziff, Gulari, and Ba
shad in 1986@3#. This minimal model predicts that the sy
tem undergoes kinetic phase transitions@3–8#, which corre-
spond to poisoning phenomena seen in catalytic experim
@11–13#.

A different catalytic reaction that presents complex kin
ics is the NO reduction with H2 that also takes place on th
surface of Pt catalyst. In this reaction multiple steady sta
poisoning, and kinetic oscillations are observed@14#. The
activity of the reactions depends on the partial pressure of
reactants PH

2
g /PNOg, on the surface temperature and on t

surface reconstruction. Poisoned states are observed for
temperatures~e.g., for temperatures below 250 K the adso
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tion of H2 leads to hydrogen-covered catalyst!, while for
high temperatures the surface is covered by NO~NO disso-
ciation becomes negligible! @14#. Phase transitions of the
catalyst between the square and the hexagonal lattice
figurations and kinetic oscillations were found between 4
and 445 K@13,14#.

In the current study a simple chemical scheme is exa
ined, which is inspired from the NO reduction on the surfa
of Pt catalyst@15–18#. The scheme uses only bimolecul
reactive steps and there are no autocatalytic processe
addition the model islattice compatible. This means that the
number of particles on the catalytic surface together with
empty catalytic sites are conserved throughout the proc
This condition is necessary in order to have a meaning
lattice model. Because of its minimal character this mo
does not address the problems of oscillatory kinetics and
lattice phase transitions observed in a range of temperat
in the NO reduction on Pt surface@15–19#. However, it pre-
dicts different equilibrium regimes separated by a critic
surface on the parameter space. Furthermore, this sim
model predicts that near criticality the catalyst remains ac
for long times, whereas away from criticality a ‘‘frozen
state is soon reached where the catalytic surface is ‘‘p
soned’’ by reactants or products.

In Sec. II the minimal lattice compatible chemical schem
is introduced. In Sec. III Monte Carlo simulations are sho
and the phase space is explored to determine different e
librium regimes. In Sec. IV the mean-field kinetic equatio
are presented and the phase space properties are discu
Qualitative agreement is reached between the mean-field
sults and the Monte Carlo simulations. In Sec. V an i
proved mean-field approach is proposed by truncating
Master equation, which takes into account only interactio
with nearest neighbors. This improved approach better p
dicts the Monte Carlo results. Finally, in the concluding se
tion the main points of this work are drawn and open pro
lems are proposed.

II. MODEL

The proposed model represents a nonequilibrium reac
process taking place on a catalytic surface and involves

l
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G. KALOSAKAS AND A. PROVATA PHYSICAL REVIEW E 63 066126
action, adsorption and desorption steps. This model is u
to describe the catalytic reduction of NO with H2 on Pt lat-
tice @14,15#. We assume that the catalytic surface is s
rounded by a gas containing in excess NO and H2 molecules
with similar partial densities. A reaction between NO and2
takes place only on the surface of a catalyst~Pt! and after
desorption of the products the catalytic site remains in
and can serve again. The model is described by the follow
chemical scheme:

S→
k1

NO, ~1!

NO1S→
k2

N1O, ~2!

S→
k3

H2 , ~3!

O1H2→
k4

S1S, ~4!

N1N→
k5

S1S, ~5!

whereS represents an empty lattice site on the catalytic s
face and theki ’s are the corresponding constants of the
actions. The first equation describes the adsorption of a
molecule on an empty site. If a neighboring empty lattice s
is available, the NO molecule can be dissociated in two
oms N and O@Eq. ~2!#. The dissociation probability has bee
measured in experiments and is of the order of 60%@16#. A
hydrogen molecule can occupy an entire empty site beca
of its small size, Eq.~3!. If an atomic oxygen and a hydroge
molecule are found in adjacent lattice sites they react fo
ing a water molecule, which is desorbed from the cataly
surface leaving two empty lattice sites, as Eq.~4! indicates.
Similarly, if two atomic nitrogens are found in adjacent la
tice sites they react forming a nitrogen molecule that in t
desorbs from the catalytic surface leaving two empty latt
sites too, Eq.~5!. These last two recombination/desorptio
processes have been modeled in one chemical reaction
in order to keep the system as simple as possible an
reduce the number of parameters involved.

A similar scheme may also describe the catalytic red
tion of NO with CO, if H2 is substituted by CO. Then th
result of Eq.~4! will be the desorption of CO2. Furthermore,
because our proposed model does not involve any struc
phase transitions of the catalytic surface it may provid
better description of the latter catalytic reduction@13#. In
what follows we use the scheme of the NO1H2 reaction, by
considering cases were 131
hex phase transitions do no
take place, and keeping in our mind the analogy with
NO1CO reduction.

In order to reduce further the parameters of our model
also treat the first two equations in one step. Then instea
Eqs.~1! and ~2! we use the reaction

S1S→
k

N1O. ~6!
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We assume that the constantk of the last reaction is equal to
unity. That means that the remaining constantsk3 , k4, and
k5 are expressed in units ofk. In the sequel we study the
chemical system of Eqs.~6!, ~3!, ~4!, and ~5! on a two-
dimensional square lattice, under the assumptionk51. Then
the final system contains only three parameters:k3 , k4, and
k5.

III. MONTE CARLO SIMULATIONS

First we investigate the behavior of the system us
Monte Carlo simulations on a square lattice consisting oL
3L sites. We start with a completely empty lattice, whe
the appropriate reactions~6!, ~3!, ~4!, or ~5! take place ran-
domly with corresponding probabilities

1

( k

,
k3

( k

,
k4

( k

, and
k5

( k

,

respectively. The sum(k in the denominators is defined a

( k511k31k41k5 ,

for reasons of normalization. The simulations proceed via
following algorithm:~a! At each trial a random lattice site i
chosen.~b! If this site is empty then with equal probabilit
~50%! a molecule NO or H2 will be found above the empty
site @20#. In the former case, if also a neighboring lattice s
is empty, then these sites can be substituted by N an
atoms with probability 1/(k, otherwise there is no change. I
the latter case H2 will be deposited with probabilityk3 /(k.
~c! If the randomly chosen lattice site is occupied by O,2
or N constituent, then the reactions~4! and ~5! may take
place with probabilitiesk4 /(k andk5 /(k, respectively, pro-
vided that they have the right environment.~d! When a par-
ticular trial is finished we continue by choosing random
another lattice site.~e! At each trial the time is equal to th
total number of trials up until then, divided by the total num
ber of lattice sites (L2). That means that the unit of tim
considered is a Monte Carlo step, which is defined asL2

trials. The temporal evolution of the concentration of ea
constituent is recorded.

The results of Monte Carlo simulations are summarized
Fig. 1. A square lattice of finite size, 40340 sites, with pe-
riodic boundary conditions is used as a catalyst. Always
initial state is the empty lattice. As the simulation procee
after a period of some initial random fluctuations the syst
reaches a stationary state, where no activity exists. In
frozen, saturated state, there are no empty sites and the la
is fully occupied by O, H2 or N. Nevertheless the timeto
needed for reaching saturation and also the dominating c
stituent concentrations (H2 or O! are strongly depended o
the kinetic parameters. For fixed values ofk4 and k5 there
exists a value ofk3, denoted ask3

cr , such that~a! for k3 less
thank3

cr the atomic oxygen dominates in the lattice@see Fig.
1~a!#, while ~b! for k3 greater thank3

cr the lattice is finally
mostly occupied by hydrogen@see Fig. 1~c!#. We call k3

cr ,
6-2
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REACTIVE DYNAMICS ON TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 63 066126
the ‘‘critical’’ value of k3, because it separates two domai
of the parameter space with distinctive steady state con
trations. For the critical valuek3

cr the lattice reaches the satu
rated state after much longer timesto , called also ‘‘satura-
tion times,’’ where either the oxygen or the hydrog
dominates, depending on the random fluctuations in the
ticular simulation@see Figs. 1~b! and 1~d!#. In Fig. 1 the time
evolution of the concentrations of H2, N, O, and vacant sites
S are presented. In cases 1~a!, 1~b!, and 1~c! the time depen-
dence of the concentrations are shown, fork3 a slightly be-
low, equal, and slightly abovek3

cr , respectively, using ex
actly the same sequence of random numbers. In case 1~d! a
simulation using different random number sequence fork3

equalk3
cr is shown. In almost all the cases withk3 near the

critical value, the concentrations of the constituents at
frozen state are roughly as follows: the nitrogen is about
the dominating~O or H2) about 0.6 and the third one (H2 or
O, respectively! about 0.1. There are no vacant sizes at al
the frozen state. These approximately stationary concen
tions neark3

cr do not seem to be significantly affected fro
the variation ofk3 through its critical value. Only as we
considerably depart fromk3

cr the concentration of the domi
nating constituent gradually increases at the expense o
other species’ concentrations.

The timeto for the system to reach the frozen state sho
a prominent maximum at the critical valuek3

cr . This can be
seen in Fig. 2, where the mean value^to& with its statistical
error is plotted as a function of parameterk3. The statistical
mean value ofto is calculated over twenty Monte Carl
simulations for the three values ofk3 roundk3

cr , because of
large fluctuations ofto near the critical value. This effect i
normally called ‘‘critical slowing down.’’ Average over ten
simulations are used fork3 values away from criticality. We

FIG. 1. Time evolution of the concentrations of sites covered
hydrogen (H2), nitrogen~N!, oxygen~O! and vacant sites on a 4
340 square lattice. The values of dimensionless reaction cons
arek451, k551 and~a! k350.73,~b! k350.74,~c! k350.75, and
~d! k350.74. The critical value isk3

cr50.74. Same random numbe
sequence is used in cases~a!, ~b!, ~c! and different sequence in~d!.
The unit of time is a Monte Carlo step~1600 trials!.
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see from Fig. 2 that as we depart from the critical value,to
drops very fast. For finite sizes there is a possibility a
particular simulation fork3 equal tok3

cr the time to to be
smaller than the correspondingto of another simulation for
k3 slightly below or above ofk3

cr using different sequence o
random numbers. However, for the same sequence of
dom numbersto is always larger at the critical value.

In Fig. 3 the dependence ofk3
cr on the parametersk4 and

k5 is presented. In particular, the variation ofk3
cr as a func-

tion of k4 is shown for three different values ofk5 differing
from each other by one order of magnitude. In order to ha
a complete coverage of the parameter spacek4 is also varied
over three orders of magnitude. As Fig. 3 shows,

y

nts

FIG. 2. The statistical mean value of timeto needed by a 40
340 lattice for reaching the frozen state, as a function of param
k3. The other parameters arek451 andk551. There is a prominent
maximum at the critical valuek3

cr50.74. Error bars represent sta
tistical errors. The dotted line is a guide for the eye. The unit
time is a Monte Carlo step.

FIG. 3. The critical valuek3
cr as a function of log10(k4) for k5

50.1 ~diamonds!, k551 ~circles!, andk5510 ~squares!. The lattice
size is 40340. The dashed lines are guides for the eye.
6-3
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G. KALOSAKAS AND A. PROVATA PHYSICAL REVIEW E 63 066126
critical valuek3
cr is shifted to higher values for increasingk4

and finally comes to a saturation value. The same behavi
observed when increasingk5. For small enough values ofk4

the value ofk3
cr only slightly depends onk5. As noted earlier,

the surface ofk3
cr(k4 ,k5) separates the three-dimensional p

rameter space (k3 , k4 , k5) in two qualitatively different
areas. Above~below! this surface the hydrogen~oxygen!
dominates in the lattice when the frozen state is reached.
values of parameters lying on this surface the finite size c
lyst remains active for much longer times.

Finally, the dependence of the characteristic timeto
needed for the system to reach the frozen state is studied
function of the lattice sizeL3L. Figure 4 shows the mea
value ^to& calculated over ten Monte Carlo runs, as a fun
tion of L. The error bars represent statistical errors. In F
4~a! this calculation is presented for the critical valuek3

cr ,
while in Fig. 4~b! for a value ofk3Þk3

cr . Notice the differ-
ence in the time scales between these two plots. We see
^to& increases more abruptly with the lattice size at the cr
cal value. For example, the ratio of^to& for lattice 120
3120 to the correspondinĝto& for lattice 20320 is ten
times larger in Fig. 4~a! (k35k3

cr) compared to Fig. 4~b!
(k3Þk3

cr). This suggests that the activity on a macrosco
catalyst lasts for much longer times when the reactive c
stants are at criticality.

IV. MEAN-FIELD APPROXIMATION

In the mean-field approximation the concentratio
xS , xN , xO, andxH of the constituents of the chemical sy
tem described by Eqs.~6!, ~3!, ~4!, and~5! obey the follow-
ing equations:

FIG. 4. The statistical mean value of timeto needed by the
system for reaching the frozen state, as a function of the lin
dimensionL of the lattice, for~a! k35k3

cr50.74 and~b! k350.68.
The lattice consists ofL3L sites and the other parameters arek4

51 andk551. Error bars represent statistical errors. The unit
time is a Monte Carlo step (L2 trials!.
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dxS

dt
522xS

22k3xS12k4xOxH12k5xN
2 , ~7!

dxN

dt
5xS

222k5xN
2 , ~8!

dxO

dt
5xS

22k4xOxH , ~9!

dxH

dt
5k3xS2k4xOxH , ~10!

where, as before, we have assumed thatk51. Taking into
account that

xS1xN1xO1xH51, ~11!

we can substitutexH at the previous equations to obtain th
dynamical system

dxS

dt
522xS

22k3xS12k4xO22k4xOxS22k4xOxN22k4xO
2

12k5xN
2 , ~12!

dxN

dt
5xS

222k5xN
2 , ~13!

dxO

dt
5xS

22k4xO1k4xOxS1k4xOxN1k4xO
2 . ~14!

This system has the following two trivial fixed points:

P1 : xS50, xN50, xO50 ~⇒xH51!, ~15!

P2 : xS50, xN50, xO51 ~⇒xH50!. ~16!

Linear stability analysis shows that theP1 fixed point, given
by Eq. ~15!, is stable. The eigenvalues of the linear stabil
matrix atP1 are

0, 2k3 , and 2k4 .

The fixed pointP2, given by Eq.~16!, is unstable. The cor-
responding eigenvalues are

0, and
2~k31k4!6A~k31k4!214k3k4

2
.

A saddle-node bifurcation takes place in the dynami
system and two nontrivial fixed points appear. For fixed v
ues of the parametersk3 andk5 the bifurcation point fork4 is

k4
cr5

8k3
2k5

@k3~11A2k5!2A2k5#2
. ~17!

For k4>k4
cr the additional fixed points are given by

ar

f
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REACTIVE DYNAMICS ON TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 63 066126
P3 : xS5k3 , xN5
k3

A2k5

, xO5y1 , ~18!

P4 : xS5k3 , xN5
k3

A2k5

, xO5y2 , ~19!

where

y65
1

2 S 12k3

11A2k5

A2k5
D

6
1

2
Ak4@k3~11A2k5!2A2k5#228k3

2k5

2k4k5
. ~20!

If the condition

k3,
A2k5

11A2k5

~21!

holds~and under the bifurcation conditionk4>k4
cr), then the

concentrationsxS , xN , andxO given by Eqs.~18! and ~19!
belong in the proper area from 0 to 1. The stable fixed po
is P3, given by Eq.~18!. Since

y11y2512k32
k3

A2k5

512xS2xN5xO1xH, ~22!

for the stable node solution we havexO5y1 and conse-
quentlyxH5y2 . That means that the dependence of the c
centrationsxO andxH on k4 is very simple, and is given by
the variation ofy1 andy2 , respectively. Fork45k4

cr there
are equal concentrationsxO5xH5 1

2 (12xS2xN). As k4 in-
creases the oxygen~hydrogen! stationary concentration i
gradually increased~decreased! up to its limiting value 1
2xS2xN ~zero! for k4→`.

The system of Eqs.~12!–~14! was solved numerically un
der the restriction of Eq.~21!, using as initial condition:xS

51, xN50, xO50. Then for k4 less thank4
cr the system

goes to the trivial stable fixed pointP1, Eq.~15!, while for k4

greater thank4
cr the system reaches the equilibriumP3, Eq.

~18!. It is observed that under the restriction of the conditi
~21! the surface at the parameter space defined by Eq.~17!
plays the same role as that of Fig. 3 discussed in the prev
section, i.e., defines the limits of the dominating constitu
in the competition between oxygen and hydrogen. The c
k4 less~greater! thank4

cr corresponds tok3 greater~less! than
k3

cr , where hydrogen~oxygen! dominates at the stationar
state of the system. Moreover, the activity on the cata
remains for much larger times when the parameters lie on
critical surface. In Fig. 5 the solid lines show projections
this surface on the two-dimensional plane ofk3 and k4 for
three different values ofk5 at 0.1, 1, and 10, respectively, a
given by Eq.~17!. The results of Fig. 3~with the error bars!
are also included for comparison with Monte Carlo simu
tions.
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Beyond the quantitative disagreement between the m
field predicted and the Monte Carlo calculated critical s
face, depicted in Fig. 5, there are also further difference
the semiqualitative level. In particular, in the domain of h
drogen domination the mean-field equilibrium is charact
ized by the absence not only of vacant sites~as in Monte
Carlo simulations! but also of nitrogen and oxygen. The sy
tem is fully covered by hydrogen in disagreement with t
situation depicted in Fig. 1~c!, where nitrogen and oxygen
are also present at the frozen state. At the other side of
critical surface the vacant site concentration is nonzero in
mean-field approximation@Eq. ~18!#, which does not happen
in Fig. 1~a!. Furthermore, although the oxygen concentrat
is greater than hydrogen, this is not necessarily valid in co
parison with nitrogen or vacant sites concentrations.

We can conclude that the mean-field approximation p
dicts the existence of the critical surface and its main role
the qualitative behavior of the system, although it can
reproduce accurately in quantitative level the results
Monte Carlo simulations. This success is very important p
vided that mean field is a very crude approximation that d
not take into account basic properties of the catalytic surf
such as the discreteness of the lattice and its two-dimensi
character.

V. IMPROVED MEAN FIELD APPROXIMATION

We are able to improve quantitatively the results of t
mean-field approximation, by using as a starting point a d
crete version of Eqs.~7!–~10!, which better match the natur
of the catalyst. To assimilate the Monte Carlo rules we c
sider explicitly the spatial arrangement of the reactants
products. For this purpose we introduce for each lattice si

FIG. 5. Projections of the critical surface on parameter spac
the plane ofk3 andk4, for ~a! k550.1, ~b! k551, and~c! k5510.
Solid lines show the results of the mean-field approximation,
~17!. Dotted lines represent the results of the improved mean-fi
approximation, Eq.~37!. The data of Fig. 3 are also added fo
comparison with Monte Carlo simulations.
6-5
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G. KALOSAKAS AND A. PROVATA PHYSICAL REVIEW E 63 066126
the corresponding site probabilities Ni , Oi , Hi , andSi to
find a nitrogen, oxygen, hydrogen, or a vacant site resp
tively. Obviously we have

Ni1Oi1Hi1Si51 for each lattice sitei . ~23!

The full state of the system can be described by the tim
dependent probability distribution functionP($s i%,t), where
each spinlike variables i represents any of the four possib
states (N, O, H,S) of site i. For the two-dimensional squar
lattice catalyst the indexi takes valuesi 51,2, . . . ,L3L.
The evolution of the probability distribution is described
the Master equation@10,21,22#

]P~$s i%,t !

]t
52(

j
wj~$s i%→$s i8%!P~$s i%,t !

1(
j

wj~$s i8%→$s i%!P~$s i8%,t !. ~24!

The transition probabilitieswj ($s i8%→$s i%) represent the
transition from state$s i8% to state$s i%. During the evolution
only one of the lattice sites changes at a time and the tra
tion rateswj depend on the state of the four neighbor sit
For example, sitej being currently on state N~nitrogen cov-
ered! can change into stateS ~empty site! provided that any
of the neighbors is at the state N and the transition proba
ity is then proportional to the reaction ratek5. The probabil-
ity Si of a given sitei to be on a stateS ~and similarly for all
other constituents! can be written in terms of the global prob
ability distribution:

Si~ t !5 (
s j , j Þ i

P~s1 ,s2 , . . . ,s i5S,s i 11 , . . . ,sL3L ,t !.

~25!

Using Eqs.~24! and~25! we can find the evolution equatio
for the site probabilitySi . However, the equation include
terms proportional to the two-site probabilitySi ,i 1d to find
simultaneouslyS particles both on sitesi and i 1d. By trun-
cating these terms intoSi ,i 1d5SiSi 1d we find the first order
truncated equations as:

dSi

dt
52k(

d
SiSi 1d2k3Si1k5(

d
NiNi 1d

1k4(
d

~OiHi 1d1HiOi 1d!, ~26!

dNi

dt
5

1

2
k(

d
SiSi 1d2k5(

d
NiNi 1d , ~27!

dOi

dt
5

1

2
k(

d
SiSi 1d2k4(

d
OiHi 1d , ~28!

dHi

dt
5k3Si2k4(

d
HiOi 1d , ~29!
06612
c-

-

si-
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il-

where the(d indicates summation over all the first neighbo
of the lattice sitei. The factors in expressions~26!–~29! arise
from the need to change the state of the given sitei, and not
the state of the entire system, as is the case of the mean
For a two-dimensional rectangular lattice, such as the c
lytic surface that is considered here, each summation(d con-
tains four terms. Using the conservation of probability, giv
by Eq.~23!, we can solve for Hi ~for example! and substitute
it in Eqs. ~26!–~28!. Then, for a lattice ofL3L sites, we
need to solve a system of 3L2 coupled equations for calcu
lating the local densitiesSi(t), Ni(t), and Oi(t). This sys-
tem constitutes the discrete version of the mean-field
proximation. Instead of three, we now deal with 3L2

nonlinear first order differential equations. This way o
takes explicitly into account the discrete nature and the tw
dimensional character of the catalyst. The total concen
tions of each constituent are given at any time by the re
tions:

N~ t !5
1

L2 (
i

Ni~ t !, O~ t !5
1

L2 (
i

Oi~ t !,

S~ t !5
1

L2 (
i

Si~ t ! ~30!

and

H~ t !512N~ t !2O~ t !2S~ t !. ~31!

The complicated discrete system of Eqs.~26!–~29! may
be simplified if we consider an homogeneous initial con
tion, where all the probabilities fort50 are site independent
i.e., Si(0)5xS(0), Ni(0)5xN(0), Oi(0)5xO(0), and
Hi(0)5xH(0) for each sitei. Then we observe from the
equations of motion that the time derivatives of each c
stituent are also independent of the particular site, leadin
common time evolution of the probabilities of every co
stituent at each lattice site, i.e.,

Si~ t !5xS~ t !, Ni~ t !5xN~ t !, Oi~ t !5xO~ t !

and Hi~ t !5xH~ t !, for each sitei . ~32!

In that case the discrete system is reduced to a simple
of the standard mean-field type. Taking into account t
each sum(d merely contributes a factor of 4, puttingk51
as previously, dividing by a factor of 2 each one of the fo
remaining equations and rescaling also by 2 the time~i.e.,
consideringt52t), we finally obtain the reduced mean-fie
system:

dxS

dt
522xS

22
k3

2
xS12k5xN

2 14k4xOxH , ~33!

dxN

dt
5xS

222k5xN
2 , ~34!

dxO

dt
5xS

222k4xOxH , ~35!
6-6



a
-
o
e
tio

th
el

l
be

he

on
e
tiv
a

t
b
n-
lt

er

e

io
th
in

n
an
st

r
s
s

o
ed

a
ce
th

The
tate
ures.
di-
the

e of
e-

the
the

rre-
ues

a-
de-
mi-
ing
e-
e-

re-
he
our
on
ate.
for
at
pa-

at
er
ur-
t of
an-
ac-
tive
la-

ical
this
ap-
of

eems
i-

est-
tions
py
zen
t of
ni-

em-
he
rs
e-
the
der

REACTIVE DYNAMICS ON TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 63 066126
dxH

dt
5

k3

2
xS22k4xOxH . ~36!

Comparing the resulting system with the standard me
field system of Eqs.~7!–~10! we conclude that for homoge
neous initial conditions the only effect of the discrete tw
dimensional nature of the catalytic surface in the mean-fi
approximation, besides time rescaling, is the renormaliza
of the two constants of reactionsk3 andk4 to valuesk3/2 and
2k4, respectively. Consequently all the discussion and
results of the previous section are valid exactly, if we mer
substitute the parametersk3 and k4 by their renormalized
values. As a result, from Eq.~17! we obtain that the critica
surface, in the improved mean-field approximation descri
here, is given by

k4
cr5

k3
2k5

Fk3

2
~11A2k5!2A2k5G2 . ~37!

In Fig. 5 we plot with dotted lines the intersections of t
critical surface given by Eq.~37!, with the planesk5
50.1, 1, and 10, respectively. Comparing with the Eq.~17!
arising from the standard mean-field approximation we c
clude that the renormalization, coming from the homog
neous discrete system, significantly improves the quantita
agreement of the theoretical mean-field results with the d
of the Monte Carlo simulations~Fig. 5, circles!. Especially in
the case where all the reaction constants are of about
same order of magnitude, the agreement is considerably
ter @see Fig. 5~b!#. In almost all cases the improved mea
field equations approximate better the Monte Carlo resu
except for the case where thek5 andk4 are much larger than
k3. Furthermore, at equilibrium, in the range of paramet
where oxygen dominates~for k4 greater thank4

cr), the con-
centration of vacant sites is decreased fromk3 to k3/2 @see
Eq. ~18!#, reducing by half its difference from zero, i.e., th
corresponding Monte Carlo equilibrium value@see Fig. 1~a!#.

Consequently, the improved mean-field approximat
that effectively leads to a renormalization of the values of
reaction constants by taking into account more detailed
formation of the surface lattice structure of the catalyst@23#,
is able to reproduce more accurately the results of Mo
Carlo simulations. Further models, taking into account r
dom local fluctuations, are expected to give more reali
results closer to the Monte Carlo results.

VI. CONCLUSIONS

Catalytic reactions restricted on two-dimensional suppo
present a rich spatiotemporal behavior that cannot alway
well described by the standard mean-field models. A
working example we have studied the catalytic reduction
NO and H2 ~or CO! on a Pt lattice. This process is describ
by a minimal set of chemical reactions@Eqs. ~6!, ~3!–~5!#,
using three reaction constants as parameters. Monte C
simulations, starting with a completely empty square latti
showed that after a period of some random fluctuations
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system comes to a stationary, frozen, fully covered state.
time needed for the system to reach the equilibrium s
depends on the parameter values and on the lattice feat
A critical surface exists in the parameter space, which
vides the parameter space in two domains where either
oxygen or the hydrogen dominates at the stationary stat
the lattice. On the dividing critical surface the catalyst r
mains active~unsaturated! for longer times, comparative to
the saturation times calculated for parameters outside
critical surface. We also examined the dependence of
saturation time on the lattice size. As expected, the co
sponding time increases abruptly for parameter val
around the critical surface.

In the framework of the standard mean-field approxim
tion the stationary states of the chemical system are
scribed by stable fixed points of the corresponding dyna
cal system. A saddle-node bifurcation takes place provid
the critical surface of the long time activity, which also d
fines the limits of the dominating constituent in the comp
tition between hydrogen and oxygen. This bifurcation p
dicts only the qualitative features of the system. T
apparent qualitative success of the mean field results in
simplified system may be related with the simple evoluti
of the reactant coverages towards the trivial poisoning st
However, this approximation should not be appropriate
describing richer models with more complex behavior, th
are possibly able to account for experimentally observed s
tiotemporal self-organized patterns@24,25#.

To improve agreement with Monte Carlo simulations
the quantitative level, it is necessary to explicitly consid
the discrete, two-dimensional character of the catalytic s
face. For homogeneous initial conditions the discrete se
coupled differential equations leads to an improved me
field scheme, which, through a renormalization of the re
tion constants, gives analytical results in better quantita
agreement with those obtained from Monte Carlo simu
tions and a better representation of the critical surface.

In a real catalytic reduction there are at least two phys
mechanisms present that are not taken into account in
description and tend to raise the poisoning that always
pears in our simulations. The first one is the desorption
NO and H2 ~or CO! taking place above 400 K@14#, which
creates vacant sites and accelerates the reaction. This s
to be responsible for the ‘‘surface explosion’’ and the chem
cal oscillations observed in the experiments@14–16#. An-
other mechanism is the reaction between next near
neighboring reactants. We have considered that the reac
~4! and ~5! may occur only whenever the reactants occu
adjacent sites in the square catalytic surface. The fro
states that appear in the Monte Carlo simulations consis
islands of oxygens or hydrogens that are surrounded by
trogens arranged in second neighboring sites among th
selves, forming a closed contour. As a result, if we allow t
reactions~4! and~5! to take place between second neighbo
with smaller probabilities compared to first neighboring r
actants, there will be a sustained activity at least near
critical surface. Both these mechanisms are currently un
consideration@26#.
6-7
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As explained in the introduction this minimal model do
not address the problem of oscillatory chemical kinetics a
surface phase transition observed for certain tempera
ranges in surface catalysis. To account for these effects m
timolecular auto-catalytic steps need to be included into
model @27#. These will introduce higher order nonlinearitie
within the mean-field equations that in turn can give rise
multistability, sustained oscillations, and pattern formatio
In addition, diffusion effects that will homogenize the syste
and that are known to contribute in the establishment of
cillatory regimes need also to be considered in a reali
.

n,

o,

06612
d
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ul-
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.

s-
ic

representation of a catalytic process. All these details can
incorporated in the current model, both in the mean-fi
approaches and in the Monte Carlo scheme, and pred
much richer spatiotemporal behavior, including pattern f
mations and nonequilibrium, oscillatory steady states.
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